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A quantum u w l i k e  theorem 11: fundamentals of 
localisation in quantum theory for resonance states 

Gabriel Hoset, Howard S Taylor? and A Tip 
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, 
The Netherlands 

Received 25 July 1983 

Abstract. The quantum KAM-like theorem is extended to resonance states. The formula- 
tion uses dilatation analysis and existence condition of a unique transformation between 
eigenstates of integrable and non-integrable Hamiltonians. This condition determines the 
ability to assign local quantum numbers to eigenstates of non-integrable Hamiltonians and 
explains localisation phenomena. 

1. Introduction 

In a recent paper (Hose and Taylor 1983), hitherto referred to as I, an existence 
condition and a method of construction were presented for a solution of the Schrodinger 
equation of a non-integrable Hamiltonian in N degrees of freedom, that could be 
uniquely assigned N quantum numbers. 

To state the condition let us first define an integrable Hamiltonian H, as one which 
commutes with a set of N commuting dynamical operators (observables) JK. The 
eigenstates of H, are also eigenstates of the N observables JK. Each one is thus 
uniquely labelled by a set of N quantum numbers corresponding to the eigenvalues of 
the dynamical operators JK. For brevity, we shall designate the eigenstates of H, simply 
as C$J. If the integrable system exhibits dynamical symmetry such that the spectrum 
of H, is degenerate, it is possible to find alternative sets of commuting observables which 
will also commute with H ,  In this case, several different eigenstates of H, exist that 
are related by unitary transformations that transform states only within the single- 
energy degenerate subspaces of H, Note that the quantum numbers that label the 
vectors in different eigenstates correspond to different sets of commuting observables. 
In what follows we shall consider for simplicity, and without loss of generality, only 
one such eigenbasis of a set of commuting N observables JK. 

For methodological purposes of making connection with classical mechanics, let us 
say that the classical analogue of the set JK is a set of N global actions that commute 
in the Poisson bracket sense with classical H, The eigenstates C$J are therefore the 
quantum analogues of classical tori in the phase space (Percival 1977) of the 
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integrable Hamiltonian H,, and the quantum numbers labelling 6, are simply the 
analogues of the values of the classical action variables on the torus. 

Now given a non-integrable Hamiltonian H it was shown in I that the condition 
that a particular bound normalised and L2 integrable eigenfunction IC, of H could be 
uniquely assigned a set of N quantum numbers J is 

where 4, is simultaneously an eigenfunction of some H,  and the set of N commuting 
observables JK. That this assignment is unique, if condition (1.1) is satisfied, is seen 
from the fact that both + and are basis vectors in two different complete orthonormal 
basis sets (the perturbed and the unperturbed) for the same Hilbert space. Note that 
if the pair CC, and 4J satisfy condition (1.1) then neither one of them will satisfy the 
same condition with another basis vector belonging to the other orthonormal set. 
Hence, condition (1.1) is a one-to-one correspondence relation, and as such, it is a 
test for the ability to uniquely assign quantum numbers that label the integrable 
function +,, to the non-integrable + as well. 

It was also previously shown (Hose and Taylor 1982, 1983) that condition (1.1) 
is the convergence criterion for an iterative method to construct the solution CC, from 
4,. Thus the ability to assign quantum numbers is at the same time the ability to 
construct the solution + from 4,. In this respect, the theorem which was presented 
in I is a quantum Kolmogorov, Arnol’d and Moser (KAM) like theorem (Arnol’d 1978). 
The latter theorem proves the existence of localised motion in classical non-integrable 
Hamiltonian systems. It does so by showing that if an integrable Hamiltonian H, is 
perturbed so as to make the new Hamiltonian non-integrable, and if the perturbation 
is sufficiently small, it is possible to construct from the unperturbed (and non-resonant) 
tori of H,, via a series of successive canonical transformations, new slightly deformed 
tori of the non-integrable Hamiltonian. The same series of successive canonical 
transformations generates at each step a truncated integrable Hamiltonian that becomes 
closer and closer to the full non-integrable Hamiltonian. Now in I, it was shown that 
the iterative construction of CC, from 4, generates at the same time a sequence of 
integrable effective Hamiltonians which are ‘close’ to the true non-integrable Hamil- 
tonian (if condition (1.1) is satisfied) in the sense that the final effective Hamiltonian 
gives the same energy while operating on 4, as does the full H by operating on 4. 

Unlike the KAM, the theorem of I does not prove a priori ‘existence’ in terms of 
analytic properties of H,, albeit by placing almost unacceptable restrictions on the 
perturbation. The new theorem, in fact, places no unusual limitations on H, and in 
this sense is more general. Here condition (1.1) is a test for existence given the exact 
solutions CC, which needs to be constructed as below or by other methods. Existence, 
in general, is then demonstrated by simply recalling that the eigenstates of a Hamiltonian 
which is known to be non-integrable, namely the HCnon-Heiles (Percival 1977) have 
been shown (Hose and Taylor 1982) to satisfy condition (1.1). Numerous other 
examples are available from, say, the success of the normal mode model to describe 
the low-lying vibrational states of molecules. 

Using condition (1.1) to assign quantum numbers requires a test 4,; that is a 
preselected H, and a set of N commuting observables JK. Condition (1.1) guarantees 
unique assignment only within the choice of H, and the set JK. It does not discard the 
possibility that other H,’s and sets JK exist that could satisfy (1.1). The question now 
comes up as to how do we know we have tested all possible H, that determine whether 
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a state could be assigned by N quantum numbers or not. The answer is we do not 
know for sure. This is exactly similar to the classical KAM theorem where given an 
arbitrary H one could not be sure how many H, exist that would make the perturbation 
‘sufficiently small’. If one set of JK are found that satisfies equation (l.l),  then the 
quantum numbers of +J can be assigned to $. If, in practice, an H,  and set JK can 
not be found to satisfy ( l . l ) ,  it can not be said with certainty that quantum numbers 
can not be assigned. If several Hs’s and JK sets satisfy ( l . l ) ,  then several different 
quantum number sets can be assigned to J,. Physically, the one with the largest value 
of the left-hand side of (1.1) is the best description: this being in accordance with the 
probability amplitude interpretation of quantum theory. 

In I, the relation of assigning quantum numbers to the question of mode, orbital, 
or compact space, localisation was discussed. Clearly 4J is local in analogy to classical 
tori. If condition (1.1) holds, since, in the probability amplitude sense, $ is dominated 
by + J ;  $ is localised on +J and the quantum numbers J are local, as opposed to global, 
quantum numbers of $. In a recent paper (Hose et a1 1984) it is shown that the 
eigenfunctions of the HCnon-Heiles Hamiltonian that satisfy conditions (1.1) have 
Wigner transforms which are slightly distorted +J ‘tori’. Moreover, it has been shown 
for this case (Hose and Taylor 1982) that those and only those J,’s that satisfy condition 
( 1.1) have eigenvalues that could be computed by semi-classical Einstein-Brillouin- 
Keller (EBK) quantisation (Noid and Marcus 1977). This of course, is due to the fact 
that the EBK method only works for states associatable with classical tori; i.e. states 
that satisfy condition (1.1). From projections onto different +J, the wavefunctions 
satifying condition (1.1) could be further divided into classes which could then be 
uniquely associated in the L-PO limit with the tori corresponding to librating and 
precessing quasi-periodic trajectories (Hose and Taylor 1982, Hose ef  a1 1984). It is 
in the nature of the localisation that physical applications are found. This paper only 
discusses how to rigorously recognise localisation i.e. by the ability to assign N local 
quantum numbers. 

As noted in I, condition (1.1) is inappropriate for resonances. A resonance is 
localised and is often quantised by EBK (Noid and Koszykowski 1980, Wolf and Hase 
1980, Hedges and Reinhardt 1982) semi-classical methods, but it does not correspond 
to an eigenfunction of H ;  i.e. it is a wavepacket. The continuum functions at the 
centre of the resonance are not of L2 type and condition (1.1) becomes meaningless. 
An extension of I is clearly required. Fortunately, the extension is not difficult using 
the dilatation analytic method (Reinhardt 1982). In § 2 the theory is reformulated 
using this method. A dilatation analogue of equation (1.1) is used and derived in § 3. 
The reader would be advised to be familiar with I before venturing forth, as the new 
proof is basically similar but notationally more complicated. 

Section 4 and the appendix give examples stressing the ideas given previously. 
Section 4 also points to differences in the present criterion for convergence of perturba- 
tion theory and that given by the Kat-Rellich theorem (Kato 1966, Rellich 1969). 
The latter defines a parameter A in 

H = H , + A V  

and looks for analyticity in A of the eigenvalues and associated eigenprojectors. Note 
that such a smallness parameter, which is the only way to assure that IhVI<< IH,I in 
classical mechanics, is not useful in quantum theory. In the latter, smallness can be 
achieved even when A is large if J, in I(J,lAVl$)I is small where V is large. As such, 
a different approach is needed and supplied here and in I. 
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2. Theoretical background 

For a system with N degrees of freedom consider a bound unit normalised eigenstate 
+J satisfying 

HdJ = & d J  (2.1) 

where H, is an integrable Hamiltonian. That is, there exist N operators J K ,  one of 
which could be H,, such that 

[ J K ,  Hsl= [ J K ,  J K ' ]  = 0 (2.2) 
i.e. that we have a complete set of commuting observables at our disposal that satisfy 

J K 4 J  = j K 4 J  

where J denotes the vector { j K }  of N quantum numbers. +J is uniquely indexed by J. 
Further consider that + and a generally complex eigenvalue E is associated with 

an isolated non-degenerate pole of the resolvent of the Hamiltonian H. As such, the 
pole may be physically observable as a bound state or a resonance. + and E are given 
by a wave equation obtained by complex dilatation (Aguilar and Combes 1971, Balslev 
and Combes 1971, Simon 1973, Reinhardt 1982) of the real axis Schrodinger equation 

H ( 5 ) + ( 1 )  = E+(5)  (2.3) 
with 

( + ( f M 5 ) )  = 1 (2.4) 

but II+(C)II is generally not equal to one. 5 is the complex scaling that uncovers the 
pole at E. In what follows the results of I for bound states are recovered by setting 
Im 5 = 0 in which case all scalar products retain their usual sense. Since dilatation is 
essentially only a change of coordinate scale for bound states equation (2.1), all 
quantities therein can be considered dilatated 

(2.1l) 

The object now is to show the conditions under which there exists a method of 
construction of a +(r) uniquely related to q5> The existence is demonstrated by giving 
a convergent perturbation iteration method that constructs +(5) out of +J. The 
condition of convergence and the uniqueness is guaranteed by 

(1 .1 l )  

Hs(5)4~ (5) = E J ~ J  (5).  

I(+€ ( f )  I4J (5))12 > t .  
Convergence will be proven in 5 3 and uniqueness follows. 

We can always extend the q5J(5) '~  and +€(5) to a complete set such that 

/ 4 K ( 5 ) ) ( 4 K ( l ) l j  ( 4 K  ( f ) / 4 L ( C ) )  = 8 K L  
K 

1 = c i+€,(l))(+€,(l)l, ( + E ( f ) I + E f ( l ) )  = 8 E E ' .  
E '  

Insertion of the former into (1 .1 ' )  immediately shows that if the weight of 4J(5) in 
t,hE(5) is greater than one half, no other 4K can do this. Likewise, if is more than 
one half weight on 4K no other can do this. The uniqueness is demonstrated. To 
construct +(l) out of 4J(5),  a projector 

Pt  P ( 5 )  = I4J(l))(4J(l)I ( 2 . 5 ~ )  



A quantum KAM-like theorem II  1207 

is defined along with its complement 

Q C =  Q ( l ) = l - P '  

[ Q'I' = Q', [PL]' = P', P'Q' = 0. 

(2 .5b)  

( 2 . 5 ~ )  

Equation (2 .1')  can then be rearranged using the Feshbach-Lowdin partitioning to give 

Htff ( E ) P E + ( 5 )  = EP5+(5) ( 2 . 6 ~ )  

or equivalently 

Htff (E)4,(5) = E d J ( 5 )  (2 .6b)  

with 

Hbff ( E )  H i p  + H ; , [ l / ( E  -H$o)]H$p  P'H'A'(E) (2 .7)  

P'H(5)P' E Hipp ,  Q C ~ ( 5 ) P '  = H & ~  etc. 

where 

Also 

+(5) =(P'+Q6)+(I)={1+[1/(E-Hbo)1H&~}4,(5)=AC(E)4J(5). (2 .8)  

A C ( E )  is a dilatated wave operator and if it exists it constructs +(5) out of 4,(5). 
Multiplying ( 2 . 6 ~ )  by 4,(c) and integrating, gives after eliminating (+,([)I+(l)) from 
both sides of equation 

E =(4J(f)lHbff ( E M J ( 5 ) ) .  (2 .9)  

Assuming, without loss of generality that the spectrum of H&, is known, the perturbed 
energy which we need to know to define A ' ( E )  and Htff ( E ) ,  can be solved for by an 
iteration procedure starting from an initial guess, for example some number E' ,  by 
putting (2 .7)  into (2 .9)  and then iterating the result. The result is expressible as having 
Hiff ( E )  given now in a continued fraction form 

1 
H LP I 4 J (  5)) - H bo + ( 4, ( f )  1 H i p  + H:, 

(2 .10)  1 
H50Pl4&)). 

-HLo + E o  

Comparing equations (2 .7)  and (2 .10)  it is seen that the continued fraction form (2 .10)  
yields at the same time a continued fraction for A'. This gives by (2 .8)  an approximation 
to +( 5 ) .  Note how each iterate E, definesa sequence of Hiff( Ei) and t,bi(C) = A'(E,)  4, (5). 
The infinite continued fraction expression (2 .10)  is strictly equivalent to Hffi ( E )  
defined in equation (2 .7) .  If the iteration procedure diverges, it means that H$ff ( E )  
is defined only at the perturbed energy (or by infinite continued fraction) and is 
therefore energy dependent. Intermediate iterates have no physical meaning. 
However, if the iteration converges, then to any desired accuracy there exists a finite 
continued fraction approximation to Hfff ( E ) ,  A b ( E ) ,  (L(5) and E. At each iteration 
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equations (2.7), (2.8), (2.9) still hold; i.e. dynamics is preserved and the limiting 
procedure of 4,(5) going to (LE(5)  is definitive. A t  each step Hf,(E) becomes the 
'close' Hamiltonian, which as will be shown, is integrable, and which approaches the 
non-integrable H ( 5 )  in the sense that it defines as above, convergent, unique and 
consistent (via (2.7), (2.8) and (2.9)) approximations to  A 5 ( E )  (i.e. +€(I)-the 
'deformed torus'). As such, the $ ( 5 )  can be labelled by the J of the d,. The J are  
the good local quantum numbers of + ( 5 ) .  The convergence criterion is equation (1.1'). 

That each iterate of HLio is integrable is due  to the fact that equation (2.10) is 
always in P5=0 space. Since the P5=0 space is just 4J(5 = 0) which is an eigenfunction 
of N commuting observables J K ,  the latter commutes with HLgo(E) .  By H:;' we 
mean that only bras and kets, not integrals, are back rotated. Note that if this 
convergence had not been guaranteed, the successive Hfg' would have depended on 
energy and commutation would not have guaranteed that the JK are  constants of 
motion. The reason is that for an energy dependent Hamiltonian H ( E ) ,  

[ J K ,  H(E)I f j ~ .  

Clearly other iteration schemes, e.g. Newton-Raphson, give methods that can solve 
for E iteratively and convergently if the initial iterate is chosen sufficiently close to  
the exact E. The Schrodinger equation is solvable by many means. What these methods 
d o  not do is to give a uniqueness criterion and they d o  not relate the energy and 
wavefunction iterations and convergence (see equation (2.7)-(2.9)). Hence other 
iteration methods d o  not assign quantum numbers. Substituting equation (2.8) into 
the left-hand side of equation ( l . l ' ) ,  and demanding that the limit of the result evaluated 

with N local quantum numbers to  exist. 

the proof that equation (1.1') is the convergence criterion. 

> , . . . be greater than 0.5 is a necessary and sufficient condition for a solution at E(o)  

Having accomplished our aims stated at  the beginning of this section, we turn to 

3. The convergence condition in the complex dilatated case 

Let H be the Hamiltonian of § 2 which we suppose to be dilatation analytic. Thus 
H ( 5 ) ,  5 E C is well defined. Suppose that E is a real o r  complex eigenvalue of H ( 5 )  
with correspnding eigenprojector P E ( [ ) .  In case E is not degenerate we have 

P E ( 5 )  = l"(C)l (3.1) 
where 1$(5)) is normalised according to  

($") = 1. (3.2) 

Thus P E ( 5 )  = Pi ( 5 )  but is not necessarily Hermitian. Note that I l + ( i ) l l  f 1 in general, 
Let I ( c $ ( ~ ) )  be a dilatation analytic vector with ( d ( f ) l 4 ( < ) )  = 1 so that 

Pi = I4(5))(4(f)l (3.3) 

is the associated projector. Eventually 14(5)) will be an  eigenvector of H s ( 5 )  as 
discussed in 0 2. Let now Q5 = 1 - P'. Then, according to  the Feshbach decomposition 
we have 

[Z - H (  5 ) I - I  = [ z - H & Q  I-' + {P' + [ Z  - H & o  ]H&p}Gp({, z ) { P 5  + H i 0  [ z - H &  I-'} 
(3.4) 
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Equation (3.4) makes sense for z not contained in the spectra of H ( 5 )  and HL,. 
We assume now that E is an isolated eigenvalue of H ( 5 )  which is not contained in 
the spectrum of H,,(l). This may not be true for every possible choice of P' and 
every 5 but it is likely that for Hamiltonians associated with atomic and molecular 
systems no problems arise. Now the pole of [ z  - H(5)]-' at z = E corresponds to the 
pole at z = E of Gp(& z ) .  Since P f  is one-dimensional this means that E must be the 
unique solution of 

E P ' - H $ ~  - H $ , [ E - H & , ] - ~ H & ~  = o  (3.6) 

or 

E-(4(~)IH(5)I4(5))-(4(~)IH~o[E-H&ol-1Hd~I4(5))=0. (3.7) 

In case 4 remains square integrable for L = O  (this happens if 4 is an eigenvector of 
the undilatated H,) we can dilatate back the second terms with the result 

~ - ( ~ I ~ l ~ ) - ( 4 ( ~ ) l ~ i , [ E - H d , l - ' H d P / ~ ( 5 ) ) = 0 .  (3.8) 

This equation (and also (3.7)) has a unique iterative solution, provided for z in 
neighbourhood of E 

l % ( 4 ( ~ ) l ~ i o E z  -Hdo I-'Hdp 14(5))1< 1 (3.9) 

or alternatively, 

1 ( 4 ( C ~ l ~ i , [ z - ~ $ o l - 2 ~ ~ i Q P 1 4 ( ~ ) ) l <  1. (3.10) 

Equations (3.9) and (3.10) are based upon the assumption made earlier that [ z -  
H&,]-' is analytic in a neighbourhood of E so that 

(4 (C) IHiQ [ z  - HiQQ 1- ' H i Q P  I 4 (5)) 

also had this property. 

of the spectrum of H ( 5 ) .  Then 
Let now r be a small circle in 6) with E in its interior and avoiding other points 

= (2  

= (2ai)-' 

fr dz{ P' + [ z - H &  ]-'Hdp } GP( 5, z ) {  P' + H i o  [ z - H 6, I-'} 

dz (z  - E)- '{P'  + [ z  - H &  ]-lH&p}( z - E)Gp(5, z )  I 
x {P-  H i o  [ z  - HiQ0 ]-I} 

= {P' + [ E  - H & ,  ] - lH&p} lim ( z  - E )  Gp(5, z ) {  P' + H i ,  [ E  - H &  I-'}. 
.?+E 

(3.11) 
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(3.15) 

(3.16) 

In case E is a real isolated eigenvalue of H, not contained in the spectrum of HQo, 
we can dilatate back with the result 1(d1$)12 > 4, the condition obtained earlier by Hose 
and Taylor. We thus have obtained the proposed extension of overlap condition 
1(d1+)12> 4 for the case of resonances. In fact, this extension is also needed in the case 
of continuum-embedded eigenvalues which cannot be removed from the continuous 
spectrum by symmetry arguments. In that case E would still be in the spectrum of 
the undilatated H,, so that [ z  -HQJ1 would not exist. Examples demonstrating 
the extension to resonances is given in the appendix. 

We end this section with two further remarks. The first is that it often happens 
that 4, the eigenfunction of the undilatated H,, has sufficient decay to compensate for 
the blowing up of $( 5 = 0). Thus (41 I)) has a meaning and equals (4( c)l$( 5)) even if 
I)( 5 = 0) is not square integrable but the uniqueness property is lost. Our second 
remark concerns the dilatation formalism applied to molecular systems in the Born- 
Oppenheimer approximation. Now the Hamiltonian is no longer dilatation analytic 
but there exists a variant, the 'exterior scaling' version (Simon 1979), which can be 
used. The whole formalism presented so far remains in force in this case. We also 
note that the exterior scaling method has computational advantages for atoms with 
inner shell electrons, since it does not deform the wavefunctions in the interior of the 
atom. 

4. Different schemes for following eigenvalues 

The difference between the assignment of quantum numbers by means of continuously 
following the eigenvalues or by means of the 50%-overlap criterion can already be 
demonstrated on 2 X 2-matrices. Thus let H ( A )  be the matrix 
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and let H, = H ( 0 ) .  The eigenvalues of H ( A )  are E,,,(A) = *[(l - A ) 2 + A 2 5 2 ] ” 2  and 
the eigenvectors are I,!I1(A) =(cos&, sin fa), & ( A )  =(-sin&, cosba) with tan a = 
lA/(l-A),so that cos a = ( 1 - A ) [ ( 1 - A ) 2 + A 2 1 2 ] - 1 ’ z .  Thus theeigenvectorsof H, are 
obtained by setting A = 0, i.e. 41 = (1, 0), $J2 = ( 0 , l )  and the overlaps of interest are 

For O S A  <1 ,  @ , ( A ) > ;  so that the overlap criterion associates 4,  with I,!Il(A). For 
A > 1 we have to continue cos a ( A )  analytically so that it becomes negative and 
consequently @ , ( A )  <; and a2(A) > f in this case. Now the overlap criterion associates 
$J2 with I , ~ ~ ( A ) .  On the other hand E,(A) and & ( A )  change continuously with A (see 
figure 1) so that + j ( A )  is still associated with 4j for A > 1 if we apply the continuity 
criterion. 

1.0 
A 

Figure 1. Perturbed and unperturbed eigenvalues as a function of the perturbation para- 
meter A .  

Acknowledgment 

This work is part of the research programme of the Stichting voor Fundamenteel 
Onderzoek der Materie (Foundation for Fundamental Research on Matter) and was 
made possible by financial support from the Nederlandse Organisatie voor Zuiver- 
Wetenschappelijk Onderzoek (Netherlands Organization for the Advancement of Pure 
Research) and from the National Science Foundation under grant No CHE-82-07152. 

Appendix 

In this appendix we consider a model example in order to show that the 50%-overlap 
condition can actually be met in the case of resonances. Thus let A E aB and let 
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act in Lz(R3, dP) .  The corresponding dilatated Hamiltonian is 

HA ( 5 1 = P2 exp[- 2 5 1 + A 1 4 ( 5 1 )( 4 ( f )  1 = HO ( 5) + VA ( 5 1. ('42) 

Here  + ( P ,  5 )  = exp[-$J]+(P exp[-l]). For sake of definiteness, we take Im 5 > 0. 
The  eigenvalue problem 

HA ( 5 )  I $A ( 0) = EA I $A ( 5)) (A31 

For large / A I  we expect I$,(5)) t o  approach Id({)). Let us therefore consider 

If we put E = k 2  a straightforward calculation starting from (A5) results in 

k 2 + i a k  = A .  ( A 1  11 
We find for A < O  the physical solution 

k =$ia{[l -(4A/a2)]"'- l} 

with the corresponding negative energy 
k"-! 2 4a { 2 - 4A / a 2  - 2[  1 - (4A / a2)]"*}. 

In the region 0 < A <Sa2 there are two virtual states but for A > +a2 there is a resonance 
with associated complex eigenvalue E = k 2 ,  

k = $(4A - a2)'/*-$ia 
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so that 

R e  E,, = A  - + a 2 ,  Im E, = -ia(A - $ u ~ ) ” ~ .  

Since 
7 

A = k’+iak = E + i a J E  

we have 

dEA(E)= l++iaE-”2= l + i a / 2 k  

so that for A + 0 we have 

2k  [ 1 - ( 4 A / ~ ~ ) ” ~ -  
lO(A)l= ~ 

/ Z k + i a /  = 1 [l - ( ~ A / u ~ ) ] ” ~  

In this case, k is positive imaginary and @ ( A )  is real. The 50%-condition now gives 

(1-4A/a2)1’2-1>~(1-4A/a2)’’’ or  1Al>?a2 ( A 1 9  

For A >;a’ on the other hand, we have a resonance eigenstate of the dilatated 
Hamiltonian. Now the 50’h-condition requires 

and this is always true for A >+a2 .  
In conclusion, we see that the 50%-condition holds for A < - $ a 2  (bound state with 

negative real eigenvalue) and for A > fa’ (resonance with complex eigenvalue). Thus 
in these cases we can take H, = Al$J)($Jl .  (Note that it only acts in the s-states subspace.) 
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